

EPA 9090 TESTING OF 82 TEX WOVEN GEOTEXTILE

Samples of 82 Tex, a woven polypropylene geotextile manufactured by Synthetic Industries, were tested for compatibility with landfill leachate sampled from the Lakeview Landfill Disposal facility located in Erie, Pennsylvania. Numerous laboratory tests were completed on specimens subjected to leachate to determine if conditions found in a landfill will adversely affect the properties of 82 Tex. Laboratory tests include:

Grab Strength	ASTM D-4632
Trapezoidal Tear	ASTM D 4533
Puncture	ASTM D 4833
Mullen Burst	ASTM D 3786
Permittivity	ASTM D 4491
Dimensional Stability	ASTM D 4591
Thickness	ASTM D 5199
Mass/Unit Area	ASTM D 3776
Mullen Burst Permittivity Dimensional Stability Thickness	ASTM D 3786 ASTM D 4491 ASTM D 4591 ASTM D 5199

The above testing was conducted at temperatures of 23°C and 50°C to model potential conditions that a geotextile would experience in a landfill application. Testing was conducted after exposure to leachate at intervals of 30, 60, 90 and 120 days. Initial baseline testing of specimens not immersed in leachate was also conducted for comparison purposes.

Test data shows that the fabric performed well when subjected to the leachate and temperature conditions used in the testing program. Variations in test results can be attributed the general variability of the material itself. Graphical representation of test data in the form of percent change from specimens not immersed in leachate can be viewed in the document.

Final Report EPA 9090 Testing 82 Tex Woven Geotextile

Synthetic Industries

Performed For:

Synthetic Industries Construction Products Division 4019 Industry Drive Chattanooga, TN 37416

Performed By:

J&L Testing Company, Inc. 938 South Central Avenue Canonsburg, PA 15317

May 4, 1994 Job No: 93R1419

May 4, 1994 93R1419

Synthetic Industries Construction Products Division 4019 Industry Drive Chattanooga, TN 37416

Attention: Mr. Rick Riggs

RE:

FINAL REPORT EPA 9090 TESTING 82 TEX WOVEN GEOTEXTILE SYNTHETIC INDUSTRIES

.

Dear Mr. Riggs:

We are pleased to submit herein the final test results for EPA 9090 testing performed on Synthetic Industries 82 Tex woven geotextile. The test was performed using leachate from the Lakeview Landfill Disposal Facility located in Erie, Pennsylvania, owned and operated by Waste Management of North America. Results of the tests are presented in Appendix A with a description of the leachate presented in Appendix B.

Upon receipt of the material, coupons were cut from the sheet to statistically sample the material per ASTM protocols. These samples were then randomly selected for the initial baseline testing and for immersion in the 23°C and 50°C temperature controlled 22 gallon glass tanks. Initial baseline/reference tests included:

ASTM D-4632
ASTM D-4533
ASTM D-4833
ASTM D-3786
ASTM D-4491
ASTM D-4594
ASTM D-5199
ASTM D-3776

Machine & Cross Direction Machine & Cross Direction

Page 2 of 3 93R1419 May 4, 1994

At 30, 60, 90 and 120 day intervals, randomly sampled coupons were extracted from each of the two temperature controlled tanks and these samples were tested for the same property characteristics as the baseline sample. The results are presented on the attached tables and the percent differences in the results are compared to the baseline samples and plotted as shown in Appendix A.

Each of the plots are discussed below:

Grab Strength (Machine and Cross Direction)

In the machine direction the data, on average, indicates little change in the material and probably within the range of the statistical differences of the product itself. In the cross direction there is a slightly downward trend in strength averaging about 6% strength loss over 120 days. However, the woven fibers tend to slightly loosen during exposure in the tank due to the recirculating system of the apparatus. This may have caused the slight loss in strength.

Trapezoidal Tear Strength (Machine and Cross Direction)

Both machine and cross direction tests indicated a variation in data, however, on the average, the strength essentially remained unchanged over the 120 day test period.

Puncture Strength

No significant changes in the material occurred over the 120 test period except for the statistical differences in the material itself.

Mullen Burst

Similar to puncture strength, no significant changes were observed. The data may appear to indicate a strength gain, however, this could be attributed to the variations of the product through random sampling procedures.

Permittivity

The data shows a general downward trend. Inspection of the samples revealed a build-up of sediments, over time, on the fabric from the leachate. These sediments tend to retard flow during the permittivity test.

Page 3 of 3 93R1419 May 4, 1994

Dimensions

No significant changes were observed.

Thickness

The only anomaly in this test are the results at 120 days. A careful inspection of the fabric sample used for thickness indicated a slight build-up of leachate residue on the material. This accounted for the slight increase in thickness. Had these accumulations been scraped off the fibers, the thickness would have been comparable to the other tests.

Mass/Unit Area

The data appears to show a slight downward trend in mass/unit area. However, the loss is generally less than 2% and probably within the statistical variation of the material itself.

In summary, the fabric performs well although there were some noted variations in the product. For the most part, these variations can be attributed to leachate particulate accumulations on the material over time, some loosening of the fibers associated with the recirculation system of the tanks and the general variability of the material.

Should you have any questions, please do not hesitate to call.

Sincerely,

J&L TESTING COMPANY, INC.

John Boschuk, Jr., P.E., REP Director - Research & Development

Enclosure JB/lao (L100.156)

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE INITIAL (UNIMMERSED)

	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
lba							_ STD.DEV.
105	170 6	151 7	150.0				
						161.1	13.082
	157.3	154.4	180.2			164.0	11.540
lbs							
	60.1	68.6	61.3			62.2	9 750
1	61.9	58.8					3.756 1.592
						00.7	1.552
lbs	85.8	77.0	87.4			83.4	4.572
psi	310	312	322	325	308	315	6.800
sec-1							
	0.15	0.18	0.16			0.16	0.010
	0.15						0.012
	lbs psi	179.6 157.3 Ibs 60.1 61.9 Ibs 85.8 psi 310 Sec-1 0.15	179.6 151.7 157.3 154.4 lbs 60.1 68.6 61.9 58.8 lbs 85.8 77.0 psi 310 312 sec-1 0.15 0.18	179.6 151.7 152.0 157.3 154.4 180.2 Ibs 60.1 68.6 61.3 61.9 58.8 58.3 Ibs 85.8 77.0 87.4 psi 310 312 322 sec-1 0.15 0.18 0.16	179.6 151.7 152.0 157.3 154.4 180.2 Ibs 60.1 68.6 61.3 61.9 58.8 58.3 Ibs 85.8 77.0 87.4 psi 310 312 322 325 sec-1 0.15 0.18 0.16	179.6 151.7 152.0 157.3 154.4 180.2 Ibs 60.1 68.6 61.3 61.9 58.8 58.3 Ibs 85.8 77.0 87.4 psi 310 312 322 325 sec-1 0.15 0.18 0.16	179.6 151.7 152.0 161.1 157.3 154.4 180.2 164.0 Ibs 60.1 68.6 61.3 63.3 61.9 58.8 58.3 59.7 Ibs 85.8 77.0 87.4 83.4 psi 310 312 322 325 308 315 sec-1 0.15 0.18 0.16 0.16 0.16

-9.2 0.4 13.3 -8.3 0.3 -28.3 -14.0 11.6 -2.7 -20.0 -13.1 -5.0 15.1 -29.4 Prev. %CHANGE %CHANGE Initial 120 DAY 1.74 8.05 4.42 4.70 -25.00 -25.00 **120 DAY** -4.21 5.03 -8.60 2.86 3.49 0.00 15.23 11.75 11.46 8.66 -0.68 -2.09 -9.81 J & L TESTING CO., INC. TEST RESULTS VALUE 169.2 145.3 149.9 64.4 64.4 96.1 93.2 0.12 0.12 66.1 62.4 324 326 157.1 -9.3 -6.2 -8.5 3.4 -5.2 -1.9 0.1 -26.2 15.8 0.1 -1.2 -3.0 25.0 30.8 Prev. %CHANGE Initial 17.06 50.67 %CHANGE 0.14 0.30 -0.01 1.45 -2.45 -1.28 0.12 0.12 5.71 3.17 -6.25 6.25 21.48 10.23 90-DAY 90 DAY ш **82 TEX WOVEN GEOTEXTIL** VALUE 156.4 149.4 163.5 74.1 89.8 76.9 65.7 83.5 83.5 0.15 0.17 3**33** 325 160.1 SUMMARY OF TEST DATA IMMERSION PERIOD -25.00 -23.53 5.30 -1.75 -15.97 -9.84 16.34 -5.44 44.01 77.33 39.89 7.32 3.72 65.74 Prev. %CHANGE %CHANGE 60-DAY Initial -13.55 0.00 9.62 -18.75 1.30 -3.60 23.54 53.52 21.33 49.33 -25.00 6.98 6.35 60 DAY -0.08 0.01 -0.42 0.62 0.08 %CHANGE VALUE 176.6 166.8 163.2 158.1 78.2 91.5 76.8 89.0 337 335 0.12 0.13 72.1 83.4 -14.22 -13.42 -13.27 -13.27 -9.90 2.88 10.91 0.00 -0.06 0.45 0.47 3.10 1.95 0.00 6.25 -5.77 -3.41 -0.32 2.54 3.31 -0.44 %CHANGE **30-DAY 30 DAY** VALUE 151.8 158.4 166.1 54.3 51.6 54.9 53.7 167.2 85.8 92.5 0.16 0.17 314 323 VALUE INITIAL 63.3 59.6 63.3 59.6 164.0 164.0 83.4 83.4 315 315 0.16 0.16 161.1 161.1 SYNTHETIC INDUSTRIES DIR. 9 9 9 9 9 IMMERS. IMMERS. TEMP. TEMP. 33 23 50 20 33 20 23 50 23 **GRAB STRENGTH** MASS/UNIT AREA MECHANICAL **MULLEN BURST** PROPERTY PROPERTY (Ave.both dir.) THICKNESS PERMITTIVITY PHYSICAL DIMENSIONS TRAP TEAR PUNCTURE (lbs) (lbs) (sql)

.• ·

í

Í

1

i

ļ

Ĩ

1.1.1

......

-

÷

3

i

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE 30 DAY, 23 DEGREE

MECHANICAL	T	1	1	· · · · ·	1	<u></u>		
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	
			0.202	01 20 3	OFEC 4	SPEC 5	MEAN	STD.DEV.
GRAB TENSILE	lbs							
MD		157.5	148.4	149.4			151.8	4.075
CD		160.7	151.2	163.2			158.4	4.075
		1					100,4	5.109
TRAP TEAR	lbs							
MD]	51.8	53.8	57.3			54.3	2.273
CD		50.4	55.9	48.5			51.6	3.138
PUNCTURE	lbs	87.3	81.5	88.6			85.8	3.087
		÷ .		. ·				
MULLEN BURST	psi	310	340	310	320	290	314	16.248
PERMITTIVITY				_				
	sec-1	0.16	0.15	0.16			0.16	0.005
PHYSICAL			·	·				
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	
			0.202	0.200	01 20 4	OFEC 5	MEAN	STD.DEV.
DIMENSIONS	in							
Initial Length		20.13	20.00					
Final Length		20.13	20.00	· · ·				
% Change		0.00	0.00				0.00	0.000
Initial Width		13.94	14.16				0.00	0.000
Final Width		13.94	14.16					
% Change		0.00	0.00				0.00	0.000
THICKNESS	mils	1						
Initial		11	11					
Final		11	11	******				·9:
% Change		0.90	1.80				0.45	1.351
MASS/UNIT AREA								
Initial	oz/sy	0.40						
Final		3.19	3.44					
Change		3.42	3.42					
70 Criallye		7.21	-0.58				3.31	3.896

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE 30 DAY, 50 DEGREE

MECHANICAL	[·····	r				
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	
			0.202	OFLU 3	SFEC 4	SPEC 5	MEAN	STD.DEV.
GRAB TENSILE	lbs							
MD		167.8	173.2	157.2			166.1	6.646
CD		158.5	172.0	171.0			167.2	6.142
							107.22	0.142
TRAP TEAR	lbs							
MD		55.7	54.3	54.6			54.9	0.602
CD		51.3	56.4	53.5			53.7	2.089
PUNCTURE	lbs	97.0	84.3	96.2			92.5	5.807
	:	•						
MULLEN BURST	psi	340	310	325	330	310	323	11.662
PERMITTIVITY	sec-1	0.17	0.17	0.17			0.17	0.000
								1
PHYSICAL								
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
DIMENSIONS	in							
Initial Length		20.13	19.94					
Final Length		20.19	19.88					
% Change		0.30	-0.30				-0.00	0.299
Initial Width		14.06	14.03					
Final Width		14.06	14.00					
% Change		0.00	-0.21				-0.11	0.107
T1 11 01 /0 17 00 0								
THICKNESS	mils							
Initial		11	11					
Final		11	11			Strattman.co.r.c.		
% Change		1.83	-0.89				0.47	1.364
MASS/UNIT AREA	07/04							
Initial	oz/sy	3.42	3.46					
Final		3.42	3.46					
% Change		-0.58	-0.29				<u> </u>	
		-0.56					-0.44	0.148

J & L TESTING CO., INC. TEST RESULTS

.

82 TEX WOVEN GEOTEXTILE 60 DAY, 23 DEGREE

MECHANICAL PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	0050 4	0050 5		
FROFERIT	UNITS	SPEUT	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
GRAB TENSILE	lbs							
MD	100	191.7	178.6	159.6			176.6	13.178
CD		164.6	171.7	164.1			176.8	3.471
							100.0	0.471
TRAP TEAR	lbs							
MD]	74.4	83.6	76.7			78.2	3.909
CD		82.0	91.2	101.3			91.5	7.882
PUNCTURE	lbs	75.1	63.7	77.6			72.1	6.069
MULLEN BURST	psi	360	336	314	334	340	337	14.675
PERMITTIVITY		0.11	0.10	0.14				
	sec-1	0.11	0.10	0.14	l	I	0.12	0.017
PHYSICAL		[· · · · · · · · · · · · · · · · · · ·			··		
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
DIMENSIONS	in							
Initial Length		20.00	19.94					
Final Length		20.00	20.00			·		
% Change		0.00	0.30				0.15	0.150
Initial Width	1	13.97	14.00					· · · ·
Final Width		13.97	14.00					
% Change		0.00	0.00				0.00	0.000
TUIOUNEDO								
THICKNESS	mils							
Initial Final		111	110					
% Change		109 –1.80	112 1.82				0.04	4.040
70 Change		-1.80	1.82				0.01	1.810
MASS/UNIT AREA	oz/sy							
Initial		3.55	3.59					
Final	1	3.55	3.56					
% Change		0.00	-0.84				-0.42	0.418
	1	Leseisensen – 1 – – 100	Low Street and the second	1	1	1969-1969-1969-1969-1969-1969-1969-1969	en ander ander an	0.710

.

į

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE 60 DAY, 50 DEGREE

MECHANICAL		*		1				
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
						0.200		STD.DEV.
GRAB TENSILE	lbs							
MD		165.3	157.9	166.4			163.2	3.774
CD		153.8	160.1	160.4			158.1	3.043
TRAP TEAR	lbs							
MD	105	94.8	69.5	66.2				
CD		94.8 97.8	75.1	94.2			76.8	12.776
		97.0	/5.1	94.2			89.0	9.961
PUNCTURE	lbs	83.7	82.4	84.2			83.4	0.763
				-			03.4	0.763
MULLEN BURST	psi	340	330	342	326	337	335	6.066
				ì				
PERMITTIVITY	sec-1	0.13	0.13	0.14			0.13	0.005
PHYSICAL								
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
						0.200		OID.DLV.
DIMENSIONS	in							
Initial Length		20.00	20.06					
Final Length		20.00	20.00					
% Change		0.00	-0.30				-0.15	0.150
Initial Width		14.06	14.44					
Final Width		14.06	14.44					ł
% Change		0.00	0.00				0.00	0.000
THICKNESS	mils							
Initial	11115	110	115					
Final		111	115					
% Change		0.91	-0.87				0.02	0.000
			-0.07				0.02	0.889
MASS/UNIT AREA	oz/sy							
Initial	-	3.45	3.34					
Final		3.40	3.43					
% Change		-1.45	2.69			i i i i i i i i i i i i i i i i i i i	0.62	2.072

Final

Initial

Final

oz/sy

% Change

MASS/UNIT AREA

% Change

1

11

-1.80

3.45

3.42

-0.85

11

1.79

3.47

3.33

-4.04

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE 90 DAY, 23 DEGREE

	 	······						
MECHANICAL								
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
GRAB TENSILE	lbs							
MD		162.2	162.9	155.3			160.1	3.430
CD		163.7	161.7	143.8			156.4	8.947
TRAP TEAR	lbs							
MD	103	72.8	68.9	80.7			74.1	4.909
CD		72.2	102.9	94.3			89.8	4.909
•							00.0	12.301
PUNCTURE	lbs	80.6	84.9	84.9			83.5	2.046
MULLEN BURST	psi	330	345	340	320	330	333	8.718
PERMITTIVITY	sec-1	0.16	0.14	0.16			0.15	0.009
						•	<u> </u>	
PHYSICAL	1		1	r	····	r	(<u> </u>	
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	
FRUFENT		SPEC I	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
DIMENSIONS	in							
Initial Length		20.13	19.13					
Final Length	1	20.13	19.06					
% Change		0.00	-0.34				-0.17	0.170
Initial Width		14.69	14.06					
Final Width		14.75	14.13					
% Change		0.41	0.46				0.44	0.027
						1		
THICKNESS	mils							
Initial		11	11]	1			

-0.01

1.794

1.592

SYNTHETIC INDUSTRIES J&L TESTING CO., INC. TEST RESULTS

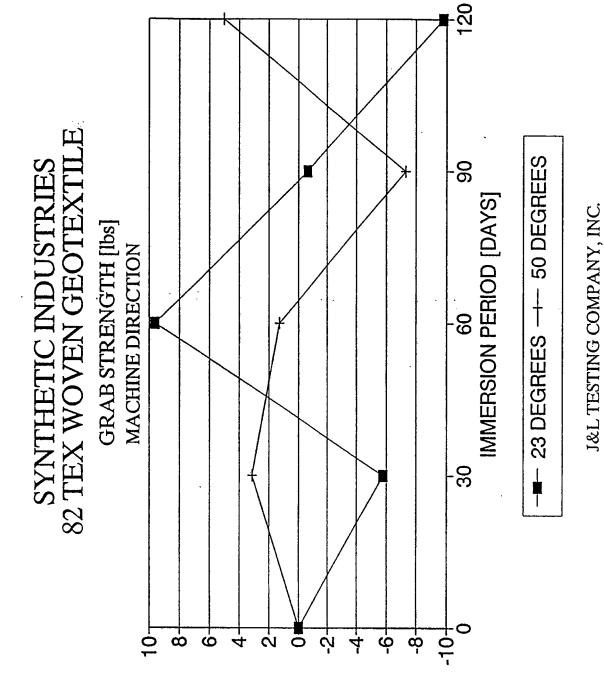
82 TEX WOVEN GEOTEXTILE 90 DAY, 50 DEGREE

MECHANICAL	T		T	T	1			
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
GRAB TENSILE	lbs							010.021.
MD	105	1						
		144.2	141.6	162.4			149.4	9.253
CD		164.6	160.3	165.7			163.5	2.330
TRAP TEAR	lbs							
MD		77.2	74.2	79.2			76.9	2.055
CD		66.9	59.8	70.4			65.7	4.410
PUNCTURE	lbs	92.0	73.1	85.4			83.5	7.826
MULLEN BURST	psi	320	320	322	334	330	325	5.741
PERMITTIVITY	sec-1	0.18	0.16	0.15	1		0.17	0.013
								0.010
PHYSICAL				[]				
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
DIMENSIONS	in							

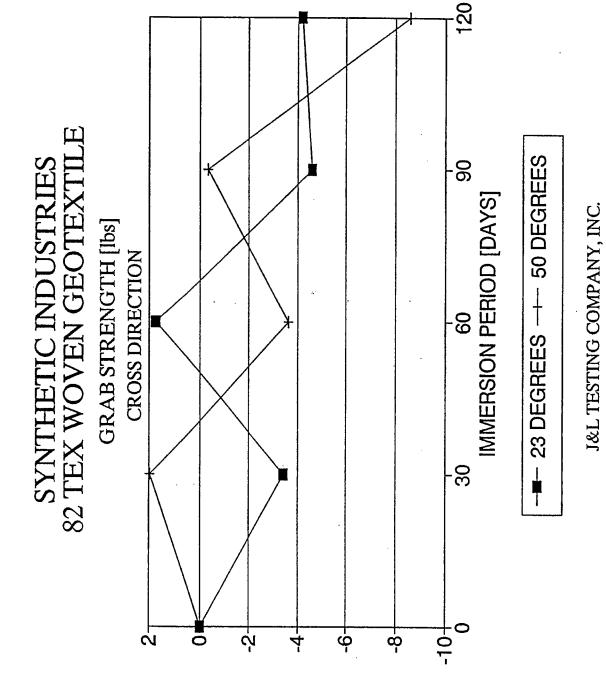
Initial Length 20.13 19.88 Final Length 20.25 19.94 % Change 0.62 0.30 0.46 0.160 Initial Width 14.09 14.06 Final Width 14.19 14.00 % Change 0.71 -0.44 0.13 0.577 THICKNESS mils Initial 12 11 Final 11 11 % Change -1.72 4.63 1.45 3.177 MASS/UNIT AREA oz/sy Initial 3.43 3.58 Final 3.35 3.57 % Change -2.24 -0.31 -1.28 0.966

1

J & L TESTING CO., INC. TEST RESULTS

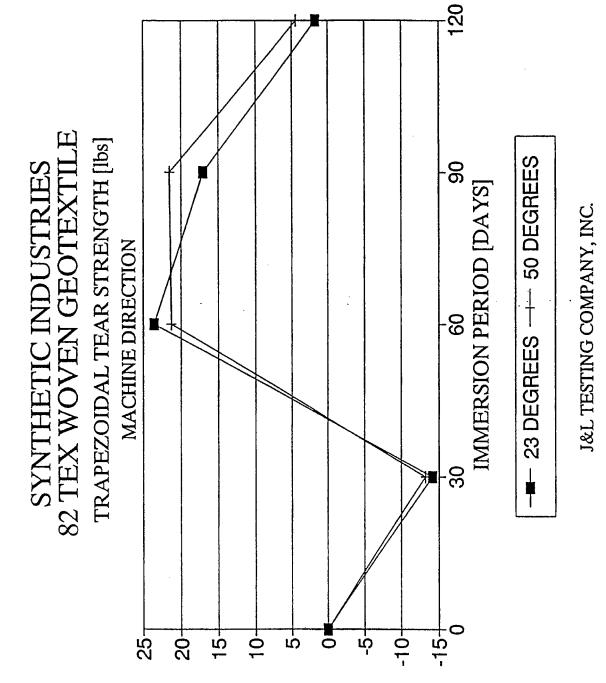

82 TEX WOVEN GEOTEXTILE 120 DAY, 23 DEGREE

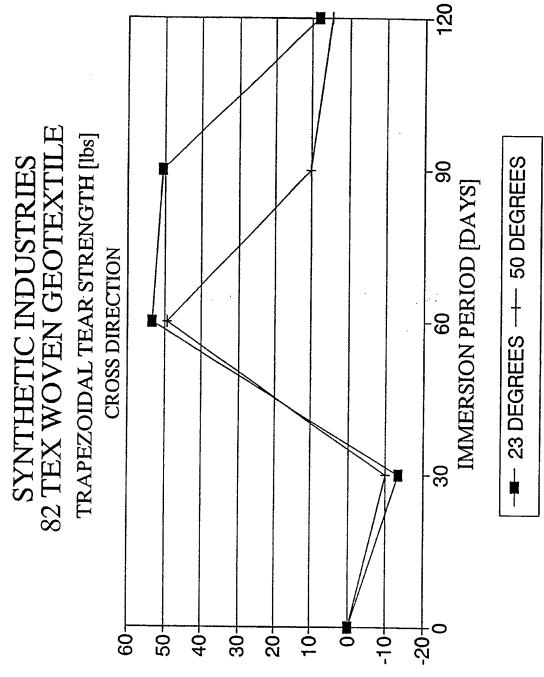
MECHANICAL			r	1	1			······································
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
	<u> </u>			0. 20 0	01 20 4		WIEAN	SID.DEV.
GRAB TENSILE	lbs							
MD		139.4	145.7	150.8]	145.3	4.674
CD		167.3	156.0	147.9			157.1	7.944
						•		
TRAP TEAR	lbs							
MD		67.9	66.4	59.0			64.4	3.909
CD		61.6	60.2	71.4			64.4	4.979
PUNCTURE	lbs	92.0	89.8	106.6			96.1	7.452
	•		•			• .•		
MULLEN BURST	psi	320	335	310	335	320	324	9.695
PERMITTIVITY	sec-1	0.12	0.11	0.10	:			
	560-1	0.12	0.11	0.12			0.12	0.005
							1	
PHYSICAL						·		· · · · · · · · · · · · · · · · · · ·
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
								010.021.
DIMENSIONS	in							
Initial Length		19.94	20.10					
Final Length		19.94	20.10					
% Change		0.00	0.00				0.00	0.000
Initial Width		14.12	14.00					
Final Width	- 7	14.12	14.00					
% Change		0.00	0.00				0.00	0.000
THOMATOO								
THICKNESS	mils							
Initial		11	11					
Final		13	13					
% Change		12.39	10.53				11.46	0.932
MASS/UNIT AREA	oz/sy							
Initial	02/SY	3.55	3.46					
Final		3.55	3.46					
% Change		-1.83	3.47 0.47					
/• Onange		-1.03	U:4/				0.68	1.148

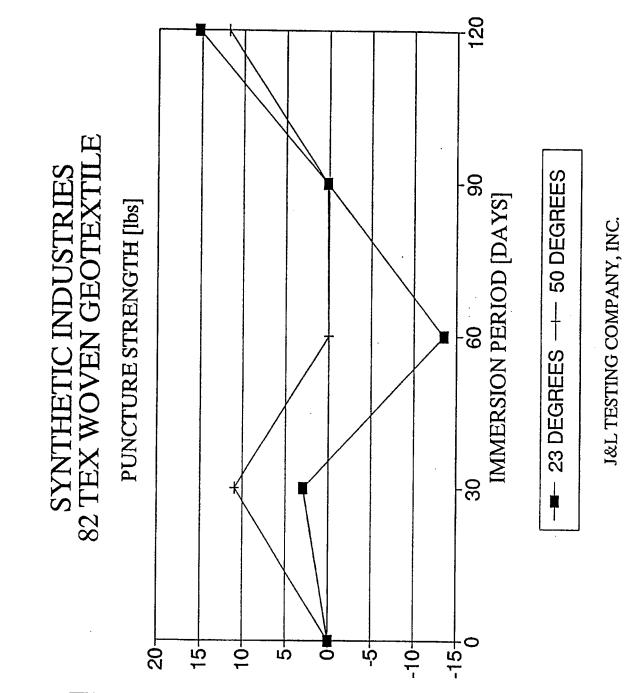

J & L TESTING CO., INC. TEST RESULTS

82 TEX WOVEN GEOTEXTILE 120 DAY, 50 DEGREE

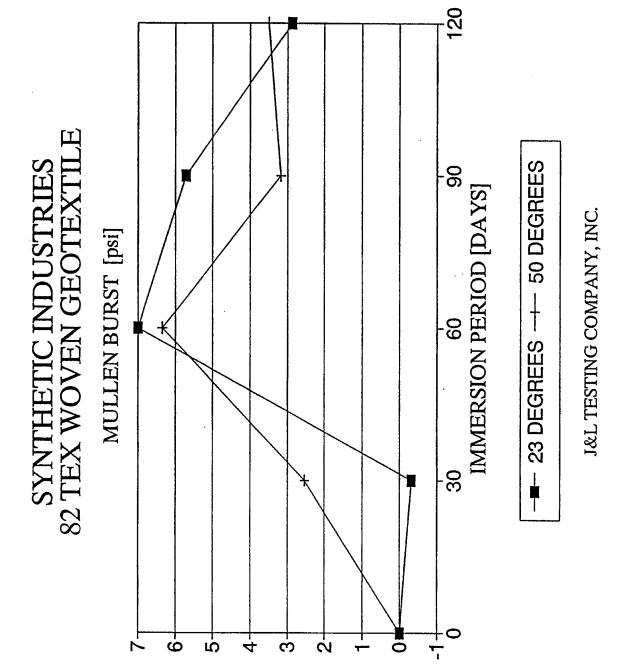
MECHANICAL	1				J	T		
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	STD.DEV.
	1					0.200		SID.DEV.
GRAB TENSILE	lbs							
MD		164.6	170.4	172.6			169.2	3.366
CD		141.7	153.1	154.7			149.9	5.780
	ł							000
TRAP TEAR	lbs							
MD		66.6	67.4	64.2			66,1	1.380
CD		58.9	62.6	65.8			62.4	2.806
PUNCTURE	lbs	95.5	91.1	93.1			93.2	1.807
			• ,	•	•			
MULLEN BURST	psi	325	310	335	330	330	326	8.602
PERMITTIVITY		0.40						
	sec-1	0.12	0.11	0.11			0.12	0.003
PHYSICAL							Steven to state of the state of	
PROPERTY	UNITS	SPEC 1	SPEC 2	SPEC 3	SPEC 4	SPEC 5	MEAN	
		0.201	0.202	01 20 3	OF LO 4	SFEC 5		STD.DEV.
DIMENSIONS	in							
Initial Length		20.12	19.90					
Final Length		20.12	19.90					
% Change		0.00	0.00				0.00	0.000
Initial Width		14.00	14.00				0.00	0.000
Final Width		14.00	14.00		Í			
% Change		0.00	0.00				0.00	0.000
THICKNESS	mils							
Initial		12	12					
Final	********	13	13					
% Change		9.57	7.76				8.66	0.903
14400/10/17 4 5 7 7	.	ł						
MASS/UNIT AREA	oz/sy							
Initial		3.49	3.57					
Final		3.37	3.54					i
% Change		-3.26	-0.92					1.169

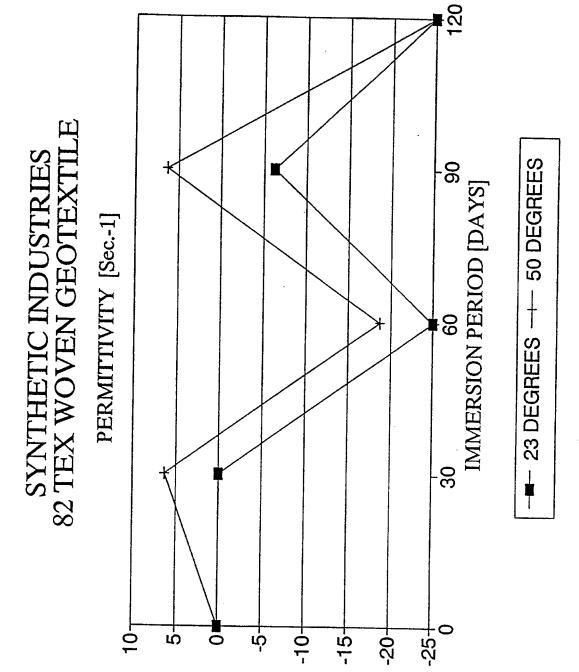



. .



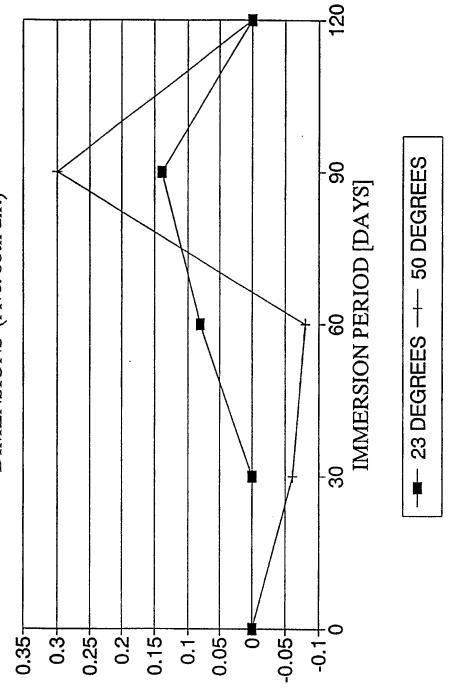
% CHANGE FROM UNIMMERSED MATERIAL





J&L TESTING COMPANY, INC.

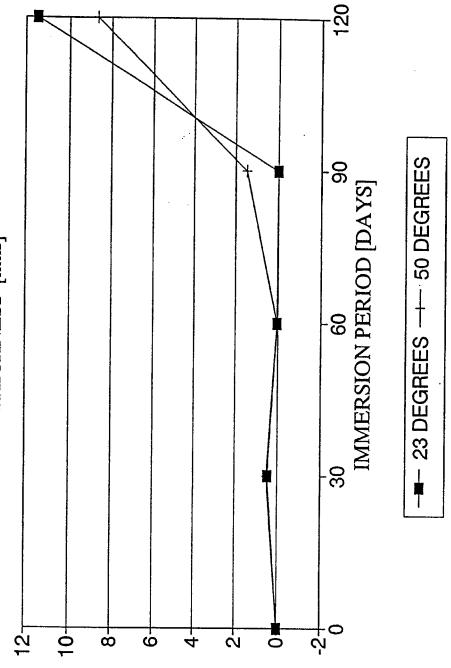
% CHANGE FROM UNIMMERSED MATERIAL



J&L TESTING COMPANY, INC.

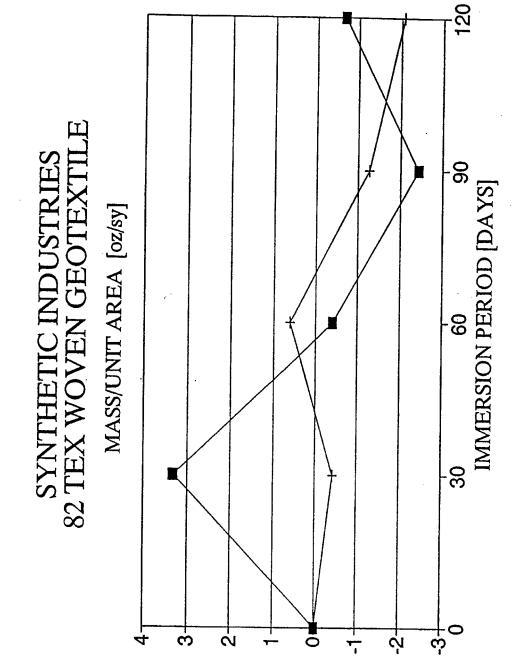
SYNTHETIC INDUSTRIES 82 TEX WOVEN GEOTEXTILE

DIMENSIONS (Ave. both dir.)



J&L TESTING COMPANY, INC.

% CHANGE FROM UNIMMERSED MATERIAL


SYNTHETIC INDUSTRIES 82 TEX WOVEN GEOTEXTILE

J&L TESTING COMPANY, INC.

% CHANGE FROM UNIMMERSED MATERIAL

J&L TESTING COMPANY, INC.

23 DEGREES ---- 50 DEGREES

WER BEVIRONMENTAL MONITORING LABORATORIUS, INC.

CLIENT REPORT

Sile: 425 - Lake View Landfill Disposal Facility 851 Robinson Road East Erie PA 16509

Sample Point: METPIT Sample Type: ILACHATE Sample Number: AI5461 ENS: 93-14364 Sumplod: 4-NOV-1993 MF: 425932 Received: 5-NOV-1993 REV: 02 Reported: 6-DEC-1993

Result	EML RL	Unita	Consecto	Mathod
NA NA 6.99 6.96 6.97 6.95 R. WAIGNER N PLAS/BOTT 2910 2900 2900 2900 2890 8.4 418 45.2 6.79 6.79 6.79 6.79 6.78 .069 2020 1360 2450	50. 1.00 0.05 0.05 0.005 0.005 0.005 0.005 0.005 10. 1.0 1.0	FT PT M9L PH UNITS PH UNITS PH UNITS PH UNITS PH UNITS UMHOS/CM UMHOS/CM DEGREES C MG/L MG/L MG/L MG/L MG/L MG/L UMHOS/CM UMHOS/CM UMHOS/CM UMHOS/CM UMHOS/CM	DL DL NQ, PX DL	FDCXDATA03 FDCXDATA03 FDCXDATA03 FDPHQUAD03 FDPHQUAD03 FDPHQUAD03 FDPHQUAD03 FDCXDATA01 FDCXDATA01 FDCXDATA01 FDCXDATA01 FDCSPCOND04 FDSPCOND04 FDSPCOND04 FDSPCOND04 CRCHXQUD04 CRPHXQUD04 CRCNDQUD04 CRCNDQUD04 CRCNDQUD04
1110 200 292000 187 549000 112 17500 306 142000 113 3110	10. 120. 5000 2.5 100. 16.0 56.0 200. 8000 84.0	MC/L MG/L UG/L UG/L UG/L UG/L UG/L MG/L	DL, NQ DI, DL DL DL DL DL DL DL DL	CRCNDQUD04 INALKB1C01 INBODXXX01 INICPTOTCA INCHLORI01 INICPTOTSE INICPTOTSE INICPTOTNI INICPTOTNI INICPTOTNA INSULFAT01 INICPTOTS
	NA NA NA 6.99 6.92 6.95 R. WAIGNER N PLAS/BOTT 2910 2900 2900 2890 8.4 418 45.2 6.79 6.79 6.79 6.79 6.79 6.79 6.79 6.79	NA NA NA NA 6.99 6.94 6.95 R. WINGNER N PLAS/BOTT 2900 200 2020 3.1360 100 2450 1.0 2450 1.0 2450 1.0 2900 2900 2900 200 <td>NA FT NA FT 6.99 PH 6.94 PH 6.95 PH 6.95 PH NA PT 6.95 PH NA PT 6.95 PH PILAS/BOTT PH 2910 UMHOS/CM 2900 UMHOS/CM 200 1.00 418 50.05 6.79 0.05 0.059 PH UNITTS 6.78 0.05 0.050 MG/L 2450 1.0 1360 10. 100 UMHOS/CM <td>NA FT MA FT MSL 6.99 PH DNITTS PH DNITTS 6.94 PH DNITTS PH DNITTS 6.95 PH UNITTS PH DNITTS 6.95 PH UNITS PH DNITS 7 PH UNITS PH UNITS 7 PH UNITS DL DL 2910 UMHOS/CM DEGREES DL DL 2900 UMHOS/CM DL DL DL 2900 0.05 PH UNITS DL 2900 0.05 PH UNITS DL 418 50. MG/L DL DL 6.79 0.05 PH UNITS NC, PX 6.78 0.05 PH UNITS NC, PX 20200 3. MG/L DL DL 2450 1.0 UMHOS/CM DL DL <t< td=""></t<></td></td>	NA FT NA FT 6.99 PH 6.94 PH 6.95 PH 6.95 PH NA PT 6.95 PH NA PT 6.95 PH PILAS/BOTT PH 2910 UMHOS/CM 2900 UMHOS/CM 200 1.00 418 50.05 6.79 0.05 0.059 PH UNITTS 6.78 0.05 0.050 MG/L 2450 1.0 1360 10. 100 UMHOS/CM <td>NA FT MA FT MSL 6.99 PH DNITTS PH DNITTS 6.94 PH DNITTS PH DNITTS 6.95 PH UNITTS PH DNITTS 6.95 PH UNITS PH DNITS 7 PH UNITS PH UNITS 7 PH UNITS DL DL 2910 UMHOS/CM DEGREES DL DL 2900 UMHOS/CM DL DL DL 2900 0.05 PH UNITS DL 2900 0.05 PH UNITS DL 418 50. MG/L DL DL 6.79 0.05 PH UNITS NC, PX 6.78 0.05 PH UNITS NC, PX 20200 3. MG/L DL DL 2450 1.0 UMHOS/CM DL DL <t< td=""></t<></td>	NA FT MA FT MSL 6.99 PH DNITTS PH DNITTS 6.94 PH DNITTS PH DNITTS 6.95 PH UNITTS PH DNITTS 6.95 PH UNITS PH DNITS 7 PH UNITS PH UNITS 7 PH UNITS DL DL 2910 UMHOS/CM DEGREES DL DL 2900 UMHOS/CM DL DL DL 2900 0.05 PH UNITS DL 2900 0.05 PH UNITS DL 418 50. MG/L DL DL 6.79 0.05 PH UNITS NC, PX 6.78 0.05 PH UNITS NC, PX 20200 3. MG/L DL DL 2450 1.0 UMHOS/CM DL DL <t< td=""></t<>

NA - Not Analyzed

ļ

-

÷ Г MD - Not Detected

Ł TEK - Trip Blank

Jt.en	Additional Connent Explanations (NQ/DI.)	
CHEMICAL OXYGEN DEMAND NITROGEN, AMMONIA PHENOLS SOLIDS, TOTAL DISSOLVED BIOCHEMICAL OXYGEN DEMAND CALCIUM-TOTAL CHLORIDE LEAD-TOTAL MANGANSE-TOTAL NICKEL-TOTAL SOLFATE SULFATE EIRC-TOTAL VOMSAAN101	Dilution factor 5 applied. Dilution factor 5 applied. CLOUDY SAMPLE. RESULTS WERE OBTAINED FROM METHOD 420.1 TO RLINIMATE MATRIX PROBLEMS. Dilution factor 2 applied. DILUTION WATER DEPLETED MORE THAN 0.2 MG/L D.O. Dilution factor 5 applied. Dilution factor 10 applied. SAMPLE FOAMED THEREFORE DILUTION WAS NECESSARY.	

Ì

NMX REVIRONMENTAL MOBILCRING LABORATORIES, INC.

CLIENT REPORT

.

\ E	425 - Lako View Landfill Disposal Facility 851 Robinson Road Rost		FACHATE MP	1 47.5932	Recaived:	4-NOV-1993 5-NOV-1993 6-DEC-1993
------------	---	--	------------	-----------	-----------	--

Analyto	Result	EML RL	Units	Concents	Method
1, 1, 1-TRICHLOROETHANE	ND	50.	UG/L	T	VOMSAAN101
1, 1-Dichlohopthane	DK I	50.	UG/L		YOMSAAN101
1, 1-DICHLOROETHENE	ND	50.	TG/L		VOMSAAN101
], 2-DIBROMORTHANE	סא	80.	UG/L		VOMSAAN101
1, 2-DICHLOROETHANK	TH D	50.	UC/L		VOMSAAN101
BENLENL	ND	. 40.	UG/L		VOMSAAB101
CIS-1, 2-DICHLOROLTHENE	סע	80.	UC/L		VOMERAN101
FTHYLBENZKNE	70.	40.	1\DU	1	VOMSAAN101
METHYLENE CHLORIDE	170.	50.	UG/I	1	VOMSAAN101
TETRACHLOROETHENE	ND	40.	VG/L		VOMSAAN101
Toluene	170.	40.	UG/L		VOMSAAN101
TRANS-1, 2-DICHLOROETHENE	ND	100	UC/L		VOMSAAN101
Trichlorortheme	DND	40.	DG/L	1	VOMSAAN101
VINYL CHLORIDE	ND	80.	UC/L		VOMSAAN101
XYLENE (TOTAL)	140.	80.	UC/L		VOMEAAN101

MA - Not Analyzod

ND - Not Detected

THE - Trip Blank

•

1 į

-

÷

1

CLIENT REPORT

Sito: 425 - Lake View Landfill Disposal Facility 851 Robinson Road East Eric PA 16509

Sample Point: METFIT Sample Type: LEACHATE Sample Number: A12506

ENS: 93-13793 Sampled: 29-DEC-1993 MP: 425932 Recaived: 31-DEC-1993 REV: 02 Reported: 19-JAN-1994

Analyte	Result	EML RL	Units	Comments	Method
FIELD DATA:	T	1	1	1	1
Depth to leachate	NA		IT		
LEACHATE BLEVATION	NA				FDCXDATA01
PH FIELD			FT MSL	1	FDCXDATA01
PH FIELD	7.59		PH UNITS	1	FOPHQUAD01
PH FIELD	7.56	i	PH UNITS		FORHOUADO
	7.59		PA UNITS	1	FDPHQUADO:
PH FIELD	7,60	1	PH UNITS		FDPHQUADO
SAMPLE COLLECTORS NAME	C. FERRICK	[1	FDXSAMPLET
SAMPLING EQUIPMENT	Y		l .		FDCXDATA0
SAMPLING MATERIAL	GLASS	1			FDCXDATA0
SPECIFIC CONDUCTANCE FIELD	2360	1	UMHOS/CM		
SPECIFIC CONDUCTANCE FIELD	2360			1	FDSPCOND04
SPECIFIC CONDUCTANCE FIELD	2350		UMHOS/CM		FDSPCOND0
SPECIFIC CONDUCTANCE FIELD			UMHOS/CN	1	FDSPCONDO
MARCH TO COMPOCINGE STELD	2360		UMHOS/CM		FDSPCOND04
MATER TEMPERATURE IN DEGREES CELSIUS	4.5		DECREES C		FDXIEMPC01
	1				
LINMICAL METHODS & ROBOTICS:					
NITROGEN, AMMONIA	34.5	0,40	Mg/l	DL	CRN2NH3X01
NITROGEN, NITRATE	.15	0.050	MG/L		CRNO3IIYD01
PH	7.56	0.05	PH UNITS		CRPEXODD04
5H	7.55	0.05	PH UNITS		CRPHXQUD04
2H	7.56	0,05	PH UNITS		CRPHXQUDD4
211	7.56	0.05	PH UNITS		
PHENOLS	D	0.050	MG/L		CRPHXQUD04
SOLIDS, TOTAL SUSPENDED	28			NQ	CRPNHRAX01
SPECIFIC CONDUCTANCE		3.	MG/L		CRTSSXXX01
SPECIFIC CONDUCTANCE	1770	1.0	UMHOS/CM		CRCNUQUD04
SPECIFIC CONDUCTANCE	1770	1.0	UMHOS/CM		CRCNDQUD04
	1170	1.0	UMHOS/CM		CRCNDQUD04
SPECIFIC CONDUCTANCE	1170	1.0	UMROS/CM		CRCNDQUD04
TOTAL ORGANIC CARBON	70.3	1.0	MG/L		CRTOCOUD01
TOTAL ORGANIC CARBON	71.9	1.0	MG/L		CRTOCOUDO1
TOTAL ORGANIC CARBON	70.5	1.0	MG/L		CRTOCOD01
TOTAL ORGANIC CARBON	70.1	1.0	MG/L · ·		CRTOCOUD01
TURBIDITY	35	1.0	NTU	TX	CRTURBID01
				**	CETORGIDOT
NORGANICS:			1		
BIOCHEMICAL OXYGEN DEMAND	131	120.	MG/L	DL, NO	TNIDODVVVOT
JRON-TOTAL	5840	100.	UG/L		INBODXXX01
LEAD-TOTAL	ND	16.0	UC/L		INICPTCTEZ
NICKEL-TOTAL	ND	40.0		DL	Ingrantope
ZINC-TOTAL	42.5		UG/L	1	1NICPTOTNI
	42.5	20.0	UG/L		INICPTOTZN

NA - Not Analyzed

ND = Not Detected

TEK = Trip Blank

Item	Additional Comment Explanations (NQ/DL)
NITROGEN, AMMONIA PHENOLS	Dilution factor 20 applied. CLOUDY SAMPLE AND RESULTS WERE DETERMINED FROM METHOD 420.1 TO ELIMINATE MATRIX PROBLEMS.
INBODXXX01 BIOCHEMICAL OXYGEN DEMAND	EMPTY - ALIQUOT FROM : AI2506-D0 CLUCOSE-CLUTAMIC ACID RESULTS WERE NOT WITHIN THE CONTROL LIMITS. HOWEVER APG STANDARDS ARE WITHIN THE CONTROL LIMITS.
LEAD-TOTAL	Dilution factor 60 applied. Dilution factor 05 applied.